Antibiotic Production, Activity Spectra and Plasmid Analysis of Streptomyces species Isolated from Soil

Main Article Content

U. S. Ekong
E. C. Ibezim

Abstract

Antibiotic producing Streptomyces strains were isolated by spread-plating aliquots of ten-fold serially diluted pre-treated soil samples on a chemically defined Streptomyces medium, ISPI, using the crowded-plate technique. Cultures on the crowded plate were bioautographed against Staphylococcus aureus (ATCC 25932).Nine of the bioactive strains (UY1 – UY9), which showed appreciable antagonism and clear inhibition zones were selected and grown as pure cultures in ISP1 medium. Antibiotic production and activity of the bioactive Streptomyces strains were carried out in submerged fermentation in the production medium, ISP2. Cells were harvested by centrifugation, processed into antibiotic-filtrates and sensitivity test on the test organisms by the modified agar-well diffusion technique, indicated high potency. Broth cultures of strains in ISP1 were subjected to plasmid analysis. Rapid screening for plasmid revealed bands of plasmid DNA. Plasmid DNA extracted by a miniprep method and plasmid profiling conducted on 1.0 % agarose gel electrophoresis, revealed probable identical single linear copies of high molecular weight plasmid DNA bands for the strains, aligning somewhat above the 10,000 base-pairs (bp), high molecular weight DNA biomarker. The role of plasmid in antibiotic production and activity was studied by plasmid curing with sub-inhibitory concentrations of acridine-orange and tested for activity and profile on agarose gel electrophoresis, which indicated the loss of antibiotic production and activity, disappearance and non-alignment of any plasmid bands on the gel electrophoresis. Transformation of the competent cured strains demonstrated antibiotics production and activity as well as the re-appearance of plasmid bands on agarose -gel electrophoresis like the native strains. The comparison between the native, cured and transformed Streptomycesisolates, showed that there was significant (p< 0.05) difference in antibiotic production and activity amongst these three forms of the Streptomyces strains. These possibly suggest and confirmed that the antibiotic production and activity of the isolated Streptomyces strains are plasmid –mediated.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ekong, U. S., & Ibezim, E. C. (2020). Antibiotic Production, Activity Spectra and Plasmid Analysis of Streptomyces species Isolated from Soil. Nigerian Journal of Pharmaceutical and Applied Science Research, 4(3), 33–41. Retrieved from http://mail.nijophasr.net/index.php/nijophasr/article/view/93
Section
Articles
Author Biographies

U. S. Ekong

Pharmaceutical Microbiology/Biotechnology unit, Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Uyo, Nigeria.

E. C. Ibezim

Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria

References

Akinjoguna, O. J., and Enabulele, R. G. (2010). Virulence factors, plasmid profiling and curing analysis of multidrug-resistant Staphylococcus aureus and coagulase negative Staphylococcus species isolated from patients with acute otitis media. J. Amer. Sci. 6(11): 1022 – 1033.

Akortha, E. E. and Filgona, J. (2009). Transfer of gentamicin resistance genes among enterobacteriaceae isolated from the outpatients with urinary tract infections attending three hospital in Mubi, Adamawa State, Nigeria. Essay 4(8); 745 – 752.

Anderson, D. G., and Mckay, L. L. (1983). Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Environ. Microbiol., 46:549 – 552.

Baron, J. E. and Finegold, S. M. (1990). Methods for testing Antimicrobial Effectiveness In: C. V Mosby (ed).Bailey Scotts Diagnostic Microbiology (8ed)., Missouri, USA, pp 171-184

Bibb, M. J. (1996). The regulation of antibiotic production in Streptomyces coelicolor A3(2) – Colworth prize lecture. Microbiol.Rev. 142 : 1335 – 1344.

Bibb, M. J. (2005). Regulation of secondary Metabolism in Streptomycetes. Curr Opin Microbiol 8: 208 – 215.

Ceylan, O., Okehen, G., and Ugur, A. (2008). Isolation of soil Streptomyces as source of antibiotics active against antibiotics resistant bacteria. EurAsia J. Bio. Sci. 2: 73 – 82.

Chin, S. C., Abdullah, N., Siang, T. W. and Wan, H. Y. (2005). Plasmid profiling and curing of Lactobacillus strains isolated from the gastrointestinal tract of chicken. J. Microbiol., 43: 251-256

Crandall, L. W., and Hamil, R. L. (1986). Antibiotics produced by Streptomyces; Major structural classes. In:S. W. Queener and L. E. Day (eds). The Bacteria (vol.9) Academic press, Orlando, Florida, USA,pp 355 – 401.

Crueger, N. C. (1984). Biotechnology: A Textbook of Industrial Microbiology. Wiley Science, Publications,Madison, USA.

Cruz, R., Arias, M. E. and Slieve, J. (1999). Nutritional requirements for the production of Pyrazoloisoquinoline antibiotics by Streptomyces griseocarnus NCIMB 40447. J. Appl. MicrobiolBiotechnol, 53: 115 – 119.

Demain, A. L. (1998). Induction of Microbial Secondary Metabolism. Int J. Microbiol 1:259 – 264.

Edward –Raja, C and Selvan, G. S. (2009). Plasmid Profile and Caring analysis of Pseudomonas aeruginosa as metal resistant.. J. Environ. Sci. Tech. 6(2): 259 – 266.

Ekong, U. S. (2013). Production, Characterization and Antimicrobial spectra of antibiotics substances from Streptomyces species isolated from different soil samples in Uyo, Nigeria. Ph.D. Thesis, University of Nigeria, Nsukka, Nigeria.

Ekong, U. S., Mgbor, N. C., Moneke, A. N and Obio S., K. C. (2004). Evaluation of the antimicrobial and some pharmacokinetics properties of an antibiotics substance produced by an environmental Aspergillusspecies SK2, isolated from Nigerian soil. Nig. J. Microbiol., 183 (1 – 2): 1190 – 206.

Ekong, U. S., Ubulom, P. M. E, Akpabio, E. I., Uzondu, A. L. E. and Ibezim, E. C. 2013. Antimicrobial spectra and activities of antibiotic substances from Streptomyces species against sensitive and resistant microorganisms. J. Pharm. Allied Sci., 10(2): 1771 – 1787.

Goodfellow, M., Mordarski, S. T., Williams, S. T and Modarski, M. (1988). Introduction to an importance of Actinomycetes. In: Goodfellow, M., Williams, S. T., and Modarski, M. (eds). Actinomycetes In Biotechnology. Academic press, New York, USA.

Gottlieb, D., and Shaw, P. D. (1967). Antibiotic Biosynthesis (Vol.2) Springer-Verlag, Berlin.

Jamuna, M., Kolanchiammal, R., and Jeevaratnam, K. (2010). Plasmid associated bacteriocin production in Lactobacillus strains isolated from some traditional fermented foods. Global J. Biotechnol. Biochem., 5(3):175 – 180.

Korn-wendisch, F., and Kutzner, H. H. (1992). The family Streptomycetaceae. In: A., Bullows, H. G. Truper,M. W., Dworkin, W. Harder, and Schleifer, S. (eds). The Prokaryotes: A Handbook of the Biology Bacteria: Ecophysiology, Isolation, Identification and Application (2ed). Springer-Verlag, New –York,USA. Pp 921 – 995.

Martin, D. (1978). Manipulation of gene expression in the development of antibiotic production. In:R. Huffer, J.Leisunger, J. Nuesch, and N. Wehrli (eds). Antibiotics and Other Secondary Metabolites –Biosynthesis And Production. Academic Press. Inc. New-York, USA Pp. 19 – 37.

Martin, J. E., and Demain, A. L. (1980). Control of Antibiotic biosynthesis. Microbiol. Rev., 44 (92): 230 – 251.

Martinez- Bueno, M., Galvez, A., Valvidia, E. and Maqueda, M. A. (1990). Transferable plasmid associated with AS-48 production in Enterococcus faecalis. J. Bacteriol., 172: 2817 – 2818.

Ohnishi, Y., Yamazaki, H., Kato, J., Tomono, A., and Horinouchi, S. (2005). AdapA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol Biochem., 69: 431 – 439.

Razaee, A, Solmani, and Forozandemogadan, M. (2005). Role of plasmid in Production of Acetobakter xylinum biofilms. Amer. J. Biochem. Biotechnol. 1 (3): 121- 124.

Riuz – Barba, J. L. Piard, J. C. and Jimenez- DiaZ, R. (1991). Plasmid Profiles and curing of plasmids in Lactobacillus plantarum strains isolated from green olive fermentation. J. Appl. Bacteriol., 71:417 –421.

Sahin, N., and Ugur, A. (2003). Investigation of the antimicrobial activity of some Streptomyces isolates. Turk J. Biol., 27: 79 – 84.

Sambrook, J. and Russel, D. (2001). Molecular loning: A Laboratory Manual (eds); Protocol No. 25 ColdSpring Harbour Laboratory Press, Cold Spring Harbour, New York, USA.

Sermonti, G. (1969). Genetics of Antibiotics Producing Microorganisms. Wiley Interxcience, John-Wiley andSons, London.

Sheikh, A. R., Afsheen, A., Sadia, K. and Abdu, W. (2003). Plasmid-borne antibiotics resistance factors among indigenous Klebsiella. Pak. J. Biotechnol. 35 (2): 243 – 248.

Singleton, P. (1997). Bacteria in Biology , Biotechnology And Medicine (4ed). John-Wiley and Son,Chiechester, England.

Solomon, D. and Israel, J. (1986). Successes and failures in search for antibiotics. J. Antibiot., B36: 700 – 704

Tilton, R.C. and Howard, B.J (1987). Antimicrobial Susceptibility Testing In: B.J. Howard et al. (eds). Clinical and Pathogenic Microbiology. C.V. Mosby, Missouri, USA, pp 121-155

Tomita, F., Ichimura, M., Koguchi, T., and Yasuzuwa, T. (1987). A new antibiotic produced by a strain of Streptomyces species. J. Antibiot 42: 723- 726.

Torres, R. Rammon, F. Mata, I., Acetal, C., and Casto M. P. (1999). Enhanced production of penicillin Vacylase by Streptomyces lavendulae. J. Appl. Microbiol. Biotechnol., 53: 81 – 84.

Watve, M. G., Tickoo, R., Rog, M. M. and Bhole, B. D. (2001). How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol., 176: 386 – 390.

Williams, S. T., Goodfellow, M., Wellington, E. M. H., Alderson G., Sneath, P. H. A., and Sackiri, M. J.(1983a). Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129:1743 –1813.

Williams, S. T., Goofellow, M, and Alderson. G. (1989). Genus Streptomyces. Waksman and Harichi, 1943339AL. In: S. T. Williams, M. E. Sharpe, and J. G. Holts (eds)- Bergey’s Manual of Systematic Bacteriology (Vol.4). Williams and Wilkins, Baltimore, USA pp. 2452 – 2492.

Woodford, N., Johnson, A P., and Threfall, E. J. (1994). Extraction and finger-printing of bacterial plasmids. In:Henrick Chart(ed). Methods In Pactical Laboratory Bacteriology. CRC Press. Boca- Raton, Florida, USA.

Yah, S. C. Eghafona, N. O., Organusi, S. and Abouo, A. M. (2007). Widespread plasmid resistance gene among Proteus species in wounds of diabetic patients in the Ahamadu Bellow University Teaching Hospital, (ABUITH) Zaria. Afri. J. Biotechnol., 6 (15): 1757 – 1762.