Antimicrobial Properties and Molecular Docking Studies of Medicinal Compounds from Moringa Oleifera and Zingiber Officinale against Escherichia coli
Contenu principal de l'article
Résumé
Background:Infectious diseases are one of the major causes of more than half of all human deaths.
Objectives:The persistent occurrences of drug resistant bacteria to conventional antimicrobial agent justified the need to search for alternative drugs especially from plant.
Methods: in vitro antibacterial activity of M. oleifera leaves and Z. officinale rhizomes on E. coli were investigated, Broth dilution method was used to determine the Minimum inhibitory concentration (MIC). Molecular docking studies were performed with Maestro program. Lead compounds were identified based on their docking scores and mechanism of action of the compounds on the target organism.
Results: Moringa and Ginger respectively were found to inhibit the growth of the bacteria at concentrations 400mg/ml and 200mg/ml only. The MIC for Moringa and Ginger was 200 mg/ml and 400 mg/ml respectively. The minimum bactericidal concentration (MBC) for Moringa and Ginger was 400 mg/ml and 800 mg/ml respectively. The docking results revealed that compounds Shogasulfonic C, 5-Hydrohexahydrocurcumin from ginger, Vicenin, Quercetin-3-o-malonylglucoside, Nicotiflorin, Chlorogenic acid, Rutin from moringa have the highest binding affinity with Dihydropteroate synthase, DNA gyrase B, FIMH adhesin, Par E subunit DNA topoisomerase IV and Enoyl acyl carrier protein reductase. The result of the in-vitro assay with the molecular docking studies revealed Moringa leaves and Ginger rhizome antibacterial activity and potential to kill E. coli by inhibiting the proteins, dihydropteroate synthase, DNA gyrase B, FIMH adhesin, Par E subunit DNA topoisomerase IV, and Enoyl ACP reductase.
Conclusion: The discovery of these compounds has highlighted the importance for drug design and development.
Téléchargements
Renseignements sur l'article

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Références
Musa A, Ibrahim M, Aliyu A, Abdullahi M, Tajuddeen N, Ibrahim H and Oyewale A. Chemical composition and antimicrobial activity of hexane leaf extract of Anisopusmannii (Asclepiadaceae). J IntercultEthnopharmac.2015; 4(2), 129.doi: 10.5455/jice.20150106124652
Saravani K and Malayeri FA. Anti-Escherichia coliactivity of herbal medicines: a systematic literature review. Gene, Cell and Tissue.2020; 7(4). https://doi.org/10.5812/gct.96241.
Keikhaie KR, Fazeli-Nasab B, Jahantigh HR and Hassanshahian M. Antibacterial activity of ethyl acetate and methanol extracts of Securigerasecuridaca, Withaniasominefra, Rosmarinusofficinalis and Aloe veraplants against important human pathogens. J Med Bacteriol.2018; 7, 1-2.https://jmb.tums.ac.ir/index.php/jmb/article/view/371
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT andHossain N. A review on antibiotic resistance: alarm bells are ringing. Cureus.2017; 9(6).doi: 10.7759/cureus.1403.
Aishatu S, Mohammed GM, Jamilu Y and Abubakar A. Ethno-botanical survey of medicinal plants used for the management of depression by Hausa tribes of Kaduna State, Nigeria. JMPR.2017; 11(36), 562-567https://doi.org/10.5897/JMPR2017.6462
Sheel R, Nisha and Kumar J. Preliminary phytochemical screening of methanolic extract ofClerodendroninfortunatum.IOSR Journal of Applied Chemistry, 2014; 7(1), 10–13.e-ISSN: 2278-5736
Mohammad AS, Mohammad SH, Mohammad E, Hoque C and Mohsinul H. In-vitroantimicrobial activity of methanolic extract of Moringaoleifera Lam. fruits. J PharmacognPhytochem. 2012; 1(4), 94-98.E-ISSN: 2278-4136
Njobdi S, Gambo M and Ishaku G. A.Antibacterial activity of Zingiberofficinale on Escherichia coli and Staphylococcus aureus. JABB.2018; 19(1), 1-8. DOI: 10.9734/JABB/2018/43534
Ganjo AR, Adham AN, Al-Bustany HA and Aka ST. Phytochemical analysis and evaluation of antibacterial activity of Moringaoleiferaextracts against gram-negative bacteria: an In-vitro and molecular docking Studies.Curr. Issues Pharm. Med. Sci..2022; 35(4), 198–205. DOI: 10.2478/cipms-2022-0035
Ibrahim MT, Uzairu A, Uba S and Shallangwa GA. Design of more Potent Quinazoline Derivatives as EGFRWT Inhibitors for the treatment of NSCLC: a computational approach. Futur J Pharm Sci. 2021; 7, 140 https://doi.org/10.1186/s43094-021-00279-3
Aleem M, Khan MI, Shakshaz FA, Akbari N and Anwar D. Botany, phytochemistry and antimicrobial activity of ginger (Zingiberofficinale): A review. IJHM.2020; 8(6), 36-49. DOI:https://doi.org/10.22271/flora.2020.v8.i6a.705
Dominic OL, Muhammad AM and Seidina IY. Awareness of the benefits of ginger usage among students of the Nigerian Army Schoolof Education, Sobi-Ilorin, Kwara State. JPEH,2018; 7(11), 15-22.http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.cejsh-1a305094-f35e-4f99-8399-88602b65dc9a
Saini RK, Sivanesan I and Keum YS. Phytochemicals of Moringaoleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech, 2016; 6(2).doi: 10.1007/s13205-016-0526-3
Maiyo FC, Moodley R and Singh M. Cytotoxicity, Antioxidant and Apoptosis studies of Quercetin-3-O-Glucoside and 4-(D-Glucopyranosyl-1, 4-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringaoleifera. Anticancer Agents Med Chem. 2016;16(5):648-56.doi: 10.2174/1871520615666151002110424.
Leone A,Fiorillo G, Criscuoli F, Ravasenghi S, Santagostini L, Fico G, Spadafranca A, Battezzati A, Schiraldi A, Pozzi F, Lello S, Filippini S and Bertoli S. Nutritional characterization and phenolic profiling of Moringaoleiferaleaves grown in Chad, Sahrawi Refugee Camps, and Haiti. Int J Mol Sci. 2015 Aug 12;16(8):18923-37. doi: 10.3390/ijms160818923.
Bashir, S.F., Kawo, A.H., Bala, J.A., and Dabai, Y.U. In-vitro Antibacterial Activities and Preliminary Phytochemical Screening of the Aqueous and Ethanolic Extracts of Zingiberofficinale. Ife Journal of Science, 2013; 15(1).https://www.ajol.info/index.php/ijs/article/view/131376
Unegbu V, Nkwoemeka N, Okey-Ndeche F and Obum-Nnadi C. Phytochemical and antibacterial properties of Moringaoleifera leaf extracts on Escherichia coli and Staphylococcus aureus. Nigerian Journal of Microbiology, 2020; 34(1), 5145–5152.
Ok S, Jeong WS. Optimization of extraction conditions for the 6-Shogaol-rich extract from ginger (Zingiberofficinale Roscoe). PrevNutr Food Sci. 2012 Jun;17(2):166-71. doi: 10.3746/pnf.2012.17.2.166
Cheesbrough M. District Laboratory Practice in Tropical Countries Part 2 (2nded.). New Delhi: Cambridge University Press 2009.
Tille PM. Bailey & Scott’s diagnostic microbiology (14th ed.). Elsevier. 2017.
Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y and Gritsanapan W. Maximizing Total phenolics, total flavonoids contents and antioxidant activity of Moringaoleiferaleaf extract by the appropriate extraction method. Industrial Crops and Products, 2013; 44, 566–571.
Rahman MA, Shaha SK, Haque SD, Zahan R, Alam T, Mandal SK and Mamun MSH. Antibacterial effect of ginger (Zingiberofficinale) against Staphylococcus aureus. Mediscope, 7(1), 31–37. https://doi.org/10.3329/mediscope.v7i1.47137
Osman AOA, Ragaa SMA and Saad MHA. The effect of extraction method and solvents on yield and antioxidant activity of certain sudanese medicinal plant extracts.JPHYTO, 2019; 8(5), 248-252.doi: 10.31254/phyto.2019.8507
Sanusi SB, Audu Y, Hamza I, Usman A and Makama P. Phytochemical analysis and antibacterial activities of ginger (Zingiberofficinale) collected from different parts of Kaduna State against selected bacteria isolated from wound. Sci. W J,2019; 14(4).https://www.ajol.info/index.php/swj/article/view/208753
Abdallah MS and Ali M. Antibacterial activity of Moringaoleiferaleaf extracts against bacteria isolated from patients attending general saniabacha specialist hospital Damaturu. J. Allied Pharm Sci, 2019; 61-66eISSN: 1596-8499
Doherty FV, Olaniran OO and Kanife UC. Antimicrobial activities of Aframomummelegueta (Alligator Pepper). Int. J. Biol., 2010; 2(2).DOI:10.5539/ijb.v2n2p126
Khandelwal S and Khurana SMP. Molecular docking studies and GC-MS analysis of the antimicrobial compounds isolated from leaves of Moringaoleifera. Medicinal Plants - IJOR,2019; 11(1), 95.DOI: 10.5958/0975-6892.2019.00004.2
David TI, Adelakun NS, Omotuyi OI, Metibemu DS, Ekun OE, Eniafe GO, Inyang OK, Adewumi B, Enejoh OA, Owolabi RT and Oribamise EI. Molecular docking analysis of phyto-constituents from Cannabis sativa with pfDHFR. Bioinformation, 2018; 14(9), 574-579. doi: 10.6026/97320630014574.
Mesfin B and Mathewos A. Antibacterial activity, phytochemical and molecular docking analysis of Croton macrostachyusroot extracts growing in Wolaita, Ethiopia. RJP, 2022; 9(4), 1–11. DOI: 10.22127/rjp.2022.349666.1933
Mohammed WF, Saleh BH, Ibrahim RN and Hassan MB. Antibacterial activity of Zingiberofficinale (Ginger) against clinical bacterial isolates. SAJRM, 2019; 3(2), 1-7.DOI:10.9734/sajrm/2019/v3i230080
Jorrit van den Berg, SaskiaKuipers. (2022). The antibacterial action of Moringaoleifera: A systematic review, S AFR J BOT, 151(A), 224-233, ISSN 0254-6299, https://doi.org/10.1016/j.sajb.2022.09.034.(https://www.sciencedirect.com/science/article/pii/S0254629922005117)
Nwokafor CV, Chukwuma GU, Henry NO, Chinedu EU, Ugonna DN, Emmanuel KA, Wisdom NC and Kenechukwu CO. (2020). “Antimicrobial Activities of Moringa, Neem and Ginger Plant Extracts Against Bacteria Associated With the Spoilage of Fruit Juice”. South Asian J. Res. Microbiol.7 (4):21-30. https://doi.org/10.9734/sajrm/2020/v7i430179.
Beristain-Bauza SDC, Hernández-Carranza P, Cid-Pérez TS, Ávila-Sosa R, Ruiz-López II and Ochoa-Velasco CE. (2019). Antimicrobial Activity of Ginger (ZingiberOfficinale) and Its Application in Food Products.Food Rev. Int, 35(5), 407–426. https://doi.org/10.1080/87559129.2019.1573829
Bukar A, Uba A and Oyeyi TI. Antimicrobial profile of MoringaoleiferaLam. Extracts against some food-borne microorganisms. Bajopas,2010; 3(1), 43-48DOI: 10.4314/bajopas.v3i1.58706
Jahan S, Shahjahan M, Rasna SS, Aktar M, Sultana S, Ahmed SM, Sabrin F and Nahar S. Antibacterial effect of Moringa (Moringaoleifera) leaf ethanolic extract against Staphylococcus aureus and Escherichia coli. MymensinghMed J, 2022; 31(4),976-982.PMID: 36189541.
Hussain M, Qadri T, Hussain Z, Saeed A, Channar PA, Shehzadi SA, Hassan M, Larik FA, Mahmood T and Malik A. Synthesis, antibacterial activity and molecular docking study of vanillinderived1,4-disubstituted 1, 2,3-triazoles as inhibitors of bacterial DNA synthesis. Heliyon, 2019; 5(11).DOI: 10.1016/j.heliyon.2019.e02812 .
Malathi K, Anbarasu A and Ramaiah S. Ethyl Iso-allocholatefrom a medicinal rice KarungkavuniinhibitsDihydropteroate Synthase in Escherichia coli: A molecular docking and dynamics study.Indian J Pharm Sci.2016; 78(6).DOI:10.4172/pharmaceutical-sciences.1000184
Dalvie ED and Osheroff N. DNA Recognition/Processing | DNA Topoisomerases: Type II.InEncyclopedia of Biological Chemistry.2021; 3, 479-486.https://doi.org/10.1016/B978-0-12-809633-8.21378-2
Fang Y, Lu Y, Zang X, Wu T, Qi X, Pan S and Xu X. 3D-QSAR and docking Studies of flavonoids as potent Escherichia coli inhibitors. Sci Rep, 2016; 6(1).https://doi.org/10.1038/srep23634
Sindhu TJ, Arathi KN, Devi A, Aswathi TA, Noushida M, Midhun M and Kuttiyil SS. Synthesis, molecular docking and antibacterial studies of novel azole derivatives asEnoylACP reductase inhibitor in Escherichia coli. Asian J. Res. Pharm. Sci. 2019; 9(3): 174-180. doi: 10.5958/2231-5659.2019.00027.4
Badiger A, Jayadev K, Manu, G, Raj R, Ammanagi A, Bajpe SN and Ramu R. Molecular docking and simulation analysis of the FimH protein with secondary metabolites from the Garcinia species. Bioinformation, 2022; 18(2), 76-81. doi: 10.6026/97320630018076
Saif R, Raza MH, Rehman T, Zafar MO, Zia S and Qureshi AR. Molecular docking and dynamic simulation of Oleaeuropaeaand Curcuma longa compounds as potential drug agents for targeting main-protease of SARS-nCoV2. Cambridge Open Engage. ChemRxiv2021.DOI: 10.26434/chemrxiv.13246739.v2
Li Y,Wong Y, Ng FM, Liu B, Wong YX, Poh ZY, Liu S, Then SW, Lee M, Ng HK, Huang Q, Hung AW, Cherian J, Hill J, Keller T and Kang C. Escherichia colitopoisomerase IV E subunit and an inhibitor binding mode revealed by nmr spectroscopy. J. Biol. Chem2016 Aug 19; 291(34):17743-53.doi: 10.1074/jbc.M116.737429.