Determination of the chemical and nutritive constituents in oil extracts of whole edible portion of Rhynchophorus phoenicis and Oryctes rhinoceros

Contenu principal de l'article

Edebi N. Vaikosen
Azibanasamesa D.C Owaba
Abraham S. Eboh
Moses Peibulu

Résumé

Background: Oryctes rhinoceros and Rhynchophorus phoenicis larvae are delicacies eaten by major tribes of the Niger Delta region of Nigeria.


Aim: Insects and their larvae are sources of micronutrients, proteins and biological active compounds. This study is aimed at characterizing the chemical constituents in oils extracted from these larvae.


Methods: The worms were macerated and extracted using 450 mL of n-hexane:dichloromethane (50:50). Extract was concentrated to 1 mL in vacuo and subjected to GC-MS analysis, while elemental analysis was carried out to assess the levels of mineral constituents in whole worms.


Results: GC-MS analyses of extracts were mainly, esters, fatty acids, sterols, ketones, aldehydes, alkanes and alcohols. Spectra showed the presences of 19 and 23 compounds in Rhynchophorus phoenicis and Oryctes Rhinoceros larvae respectively - of which these esters, Methyl hexadecanoate, Methyloctadecan-9,12-dienoate and Methyl stearate were found in both, while major difference is the presence of the tocopherols (Vitamin E) in Rhynchophorus phoenicis only. These compounds were confirmed from the NIST library.  Amongst the mineral nutrients, Na content was the highest (207.41 and 216.55 mg/Kg in R. phoenicis and O. Rhinoceros respectively). The order was Na>Fe>Mn>Zn>K>P>Mg>Ca, while Al, Se, Cr and Pb were >0.001 mg/Kg.


Conclusion: Most of the compounds identified are known to exhibit bio-active and curative properties  and could also boost the amelioration of different ailments. Therefore, both insect larvae species are likely to have high medicinal and nutraceutical potentials.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Renseignements sur l'article

Comment citer
N. Vaikosen, E., D.C Owaba, A., S. Eboh, A., & Peibulu, M. (2023). Determination of the chemical and nutritive constituents in oil extracts of whole edible portion of Rhynchophorus phoenicis and Oryctes rhinoceros. Nigerian Journal of Pharmaceutical and Applied Science Research, 11(4), 36–55. https://doi.org/10.60787/nijophasr-v11-i4-512
Rubrique
Articles

Références

Van Huis, A., Van Itterbeeck, J., Klunder, H., Merten, E., Halloran, A., Muir, G., Vantomme, P. (2013). Edible insects-Future prospects for food and feed security. FAO, Forestry, 171 pp.

Okore, O., Avaoja, D and Nwana, I. (2014). Edible Insects of the Niger Delta Area in Nigeria. Journal of Natural Sciences Research, 4(5): 1-9

Ekpo, K.E. and Onigbinde, A.O. (2005). Nutritional Potentials of the Larva of Rhynchophorus phoenicis (F). Pakistan Journal of Nutrition, 4 (5): 287-290.

Jongema, Y. List of edible insects of the world (April 1, 2017)-WUR available at www.wur.nl/en/expertise-services/chair-groups/plants-science/laboratory-of-entamology/edible insect/wordwide species list.htm (Accessed 2nd October, 2022).

Benard, T and Womeni, H. M. (2017). Entomophagy: Insect as Food.; http://dx.doi.org/10.5772/67384.

Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L and Li, F. (2019). Edible insects as a food source. A review. Food Production, Processing and Nutrition, 1(2): 1-12.

Gaston, K and Chown, S.L. (1999). Elevation and climatic tolerance: A test using dung beetles. Oikos, 86(3): 584-590

Adli, D.N. (2020). The potential of sago larva as insect meal for poultry feed: Preliminary study. Journal of Livestock Science and Production, 4(2): 272-275.

Ghosh, S., Jung, C., Meyer-Rochow, V.B. (2016). Nutritional value and Chemical composition of larvae, pupae and adult of worker honey bee, Apis mellifera lingustica as a sustainable food source. Journal of Asian Pacific Entomology, 19, 487-495.

Kaurimska, I and Adamkova, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4; 22-26.

Okoli, I.C., Olodi, W.B., Ogbuewu, I.P., Aladi, N.O., Okoli, C.G. (2019). Nutrient composition of African palm Grub (Rhynchophorus Phoenicis) larvae harvested from Raphia palm trunk in the Niger Delta swamps of Nigeria. Asian Journal of Biological Science, 12(2): 284-290.

Elemo, B. O., Elemo, G. N., Makinde, M. A., & Erukainure, O. L. (2011). Chemical evaluation of African palm weevil, Rhychophorus phoenicis, larvae as a food source. Journal of Insect Science, 11(1), 146. http://doi.org/10.1673/031.011.14601

Ekpo, K.E., Onigbinde, A.O and Asia, I.O. (2009). Pharmaceutical potentials of the oils of some polar insects consumed in southern Nigeria. African Journal of Pharmacy and Pharmacy, 3(2): 051-057.

Omotoso, O.T and Adedire, C.O. (2007). Nutrient composition, mineral content and the solubility of the proteins of palm weevil Rhychophorus phoenicis (coleopteran Curculionidae). Journal of Zhejiang University Science B, 8, 318-322

D’Antoinio, V., Serafini, M., Battista, N. (2021). Dietary modulation of oxidative stress from edible insects. A Mini-Review. Frontiers in Nutrition, 8: 642551. Doi10.3389/fnut.2021642551.

da silva Lucas, A.J., de Oliveira, L.M., da Rocha, M., Prentice, C. (2020). Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chemistry, 311, 126022. DOI: 10.1016/j.foodchem.2019.126022.

Dutta, P., Sahu, R.K., Dey, T., Lahkar, M.D., Manna, P., Kalita, J. (2019). Beneficial role of insects-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions, 313: doi https//doi.org/10.1016/j.cbi.2019.108824.

Nongonierma, A. B and FitGerald, R.J. (2017). Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innovative Food Science and Emerging Technologies, 43:239-252.

Nowakowski, A.C., Miller, A.C., Miller, M.E., Xiao, H and Wu, X. (2021). Potential benefits of edible insects. Critical Reviews in Food Science and Nutrition, 62(13): 3499-3508. https://doi.org/10.1080/10408398.2020.1867053.

Blonddeau, N., Lipsky, R.H., Bourourou, M., Duncan, M.W., Gorelick, P.B and Marini, A.M. (2015). Alpha-linolenic acid. An omega-3 fatty acid with neuroprotective properties-ready for use in the stroke clinic, Biomed Research International, 519830.

Bukkens, S. G., & Paoletti, M. G. (2005). Insects in the human diet: nutritional aspects. Ecological implications of minilivestock; role of rodents, frogs, snails, and insects for sustainable development , 545–577pp

Rumpold, B. A., & Schluter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735

Olaniyi, A.A. and Ogungbamila, F.O. (1991). Experimental Pharmaceutical Chemistry. Shaneson C.I. Ltd., Ibadan, Nigeria, 157p.

AOAC (Association of Official Analytical Chemist). (2005) .Official method of analysis.18th Edition. Association of Official Analytical Chemists, Washington DC, 41p.

Akinola, F.F., Oguntibeju, O.O., Adisa, W.A. and Owojuyigbe, O.S. (2010). Physicochemical Properties of Palm Oil from different Palm Oil Local Factories in Nigeria. Journal of Food, Agriculture and Environment; 8(3&4): 264 – 269.

Isaac, B.A. and Adejumo, O.I. (2010). Physicochemical properties of roselle seed oil. Nutrition Food Science, 40:186 – 192.

Japir, A. A. W., Salimon, J., Derawi, D., Bahadi, M., Al-Shuja’a, S. and Yusop, M.R. (2017). Physicochemical characteristics of high free fatty acids of crude palm oil. EDP Science, 24(5): 489 – 506.

Owaba, A.D.C., Bunu, S.J., Oparaodu, J.T. (2021). Physicochemical and elemental assessment of vegetable oils in Yenagoa metropolis, Bayelsa State, Nigeria. European Journal of Pharmaceutical and Medical Research, 8(10): 10-14.

Helaludin, A.B.M., Khalid, R. S., Alaama, M. and Abbas, S. A. (2016). Main analytical techniques used for elemental analysis in various matrices. Tropical Journal of Pharmaceutical Research, 15(2): 427 – 434.

Glasser, C.A. (2008). Analysis of fixed oils, fats and waxes pp405–436.In:L.G. Chatten, (Editor) Pharmaceutical Chemistry: Theory and Application. Volume 1. CBS Publisher & Distribution PVT Ltd., New Delhi India, 504p

SON (Standard Organization of Nigeria). (2005). Standards for edible refined palm oil and its processed form, 2–5

Owaba, A.D.C, Etim, E.I, and Johnson, E.C. (2020). Physicochemical and Spectroscopic Analysis of Oils from Terminalia ivoriensis A. Chev. Combretaceae. Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry, 8(2): 40-47

Zahir, E., Saeed, R., Hammed A. M. and Yousuf, A. (2014). Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arabian Journal of Chemistry, 6: 1878 – 5352.

Olanrewaju, S.A and Moriyike, M. E. (2013). Physicochemical characteristics and the effect of packaging materials on the storage stability of selected Cucurbits oils. Journal of Food and Nutrition, 1(3): 34 – 37.

Tasic, D.R and Klofuta, C. (1999). The temperature dependence of dynamic viscosity for some vegetable oils, Acta Chim. Slovenia, 46(4): 511-521.

Okaraonye, C.C and Ikewuchi, J.C.( 2008). Rhynchophorus Phoenicis (F) larvae meal: Nutritional value and health implications. Journal of Biological Sciences, 8; 1221-1225.

Shrimanker, I, and Bhattarai, S. (2022). Electrolytes. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Jan–. PMID: 31082167.

Chen J.S., Sabir, S., Al Khalili, Y. (2022). Physiology, osmoregulation and excretion. [Updated 2022 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541108/

WHO. (2021). Salt Reduction. https://www.who.int/news-room/fact-sheets/detail/salt-reduction (Accessed October, 2022).

Palacios, C., Hofmeyr, G J., Cormick, G., Garcia-Casal, M., Pena-Rosas, J.P., Betrain, A.P. (2021). Current calcium fortification experiences: a review. Annals of the New York Academic of Science, 1481(1):55-73. https://doi.org/10.1111/nyas.14481

Heaney RP, Dowell MS, Bierman J, Hale CA, Bendich A. (2001). Absorbability and cost

effectiveness in calcium supplementation. Journal of the American College of Nutrition. 20(3):239.

Institute of Medicine (IOM). (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; Food and Nutrition Board, National Academy of Sciences; The National Academy Press: Washington, DC, USA

Takov, D.I., Zubrik, M., Contarini, M. Insects as a food potential and perspective. Polish Journal of Entomology, 90(2): 48-62.DOI: 10.5604/01.3001.0014.8764

Okaraonye, C.C., Ikewuchi, J.C. Nutritional potential of Oryctes rhinoceros larva. Pakistan Journal of Nutrition, 2009; 8, 35-38. https://doi.org/10.3923/pjn.2009.35.38

Mattew, A.A. and Panommummal, R. (2021). Magnesium-the master cation-as a drug-possibilities and evidences. Biometals, 34, 955-986. https://doi.org/10.1007/s10534-021-00328-7

FAO/WHO. (2001). Human vitamin and mineral requirements: report of a joint FAO/WHO

expert consultation, Bangkok, Thailand. Rome Italy.

Medeiros, R.J.; dos Santos, L.M.G.; Freire, A.S.; Santelli, R.E.; Braga, A.M.C.B.; Krauss, T.M.; Jacob, S.C. (2012). Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control, 23, 535–541.

Akakpo, A.Y., Tchaniley, L., Osseyi, E.G., Tchacondo, T. (2020). Biochemical composition and nutritional value of larvae of Rhynchophorus phoenicis collected from rot palm trees (Elaeis guineensis) in palm groves in Togo. American Journal of Innovative Research and Applied Sciences, 11(3): 193–198.

Bonvissuto, D. (2022). Phosphorus in your diet. Medically reviewed by Melinda Ratini, (August 31, 2022) (https://www.webmd.com/vitamins-and-supplements/what-is-phosphorus). Accessed October 04, 2022

Fletcher, J. (2019). What are the health benefits of phosphorus? Medically reviewed by K. Marengo 2019; (https://www.medicalnewstoday.com/articles/325623#health-benefits). Accessed October 04, 2022.

Chang, A. R and Anderson, C. (2017). Dietary phosphorus intake and the kidney. Annual review of nutrition, 37, 321–346. https://doi.org/10.1146/annurev-nutr-071816-064607

Potravinarstvo, P. (2019). Oryctes rhinoceros larva oil supplementation improves tissue antioxidant status in cholesterol-fed rats,; Article DOI: 10.5219/1180

Brigelius-Flohé R, Traber MG .(1999). "Vitamin E: function and metabolism". FASEB Journal. 13 (10): 1145–55. doi:10.1096/fasebj.13.10.1145.

Jilani, T and Iqbal, P. M. (2018). Vitamin E deficiency in South Asian population and the therapeutic use of alpha-tocopherol (Vitamin E) for correction of anemia. Pakistan Journal of Medical Science, 2018; 34(6): 1571–1575. doi: 10.12669/pjms.346.15880.

Shuaib, A, Rohit, A, Piyush, M. (2016). A review article on essential oils. Journal of Medicinal Plants Studies, 4(3): 237-240.

Stephane, Y.F.F and Jules, J.K.B. (2020). Terpenoids as important bioactive constituents of essential oils. essential oils; bioactive compounds, new perspectives and applications Edited by (Santana de Oliveira, M., Almeida da Costa, W and Silva G.S) DOI: 10.5772/intechopen.91426

Chen, X, Mukwaya, E, Wong, M & Zhang, Y. (2014). A systematic review on biological activities of prenylated flavonoids, Pharmaceutical Biology, 52:5, 655-660, DOI: 10.3109/13880209.2013.853809.

Masyita, A., Sari, R.M., Astuti, A.D., Yasir, D., Rumata, N R., Emran, T.B., Nainu, F Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry, X (13), 100217.

Álvarez-Martínez, F.J. E. Barrajón-Catalán, M. Herranz-López, Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine, 90 Article 153626.

Gaertner, G., Muller, L., Roos, F.J., Cani, G., Santos, S.R.A., Niero, R., Calixto, B.J., Yunes, A.R., Monache, D.F., Cechinel-Filho, V. (1999). Analgesic triterpenes from Sebastiania schottiana roots, Phytomedicine, 6 (1): 41–44.

Akihisa T, Kojima N, Kikuchi T, Yasukawa, K.., Tokuda, H., Masters, E.T., Manosroi, A and Manosroi, J. (2010). Anti-inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat, Journal of Oleo Science, 59 (6): 273– 280.

Chen YF, Ching C, Wun TS, Wu CR, Hsieh WT and Tsai HY. (2012). Balanophora spicata and lupeol acetate possess antinociceptive and anti-inflammatory activities in vivo and in vitro. Evidence-Based Complementary and Alternative Medicine, Article ID371273, 10 pages.

Ivis, A., Veloz, R, Perera, L.M.S, Dorvigny, B.M., de Oliveira, I.M, Mary Ann Flogio, M.A. (2019). Antiinflammatory activity of fractions and isolated compounds from Tabebuia hypoleuca stems in mice. Drug Discovery, 13, 129- 137.

Arora, S and Kumar, G. (2018). Phytochemical screening of root, stem and leaves of Cenchrus biflorus Roxb. Journal of Pharmacognosy and Phytochemistry, 7(1): 1445-1450

Shaaban, M.T, Ghaly, M.F, Fahmi, S. M. (2021). Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology Environmental Health Techniques. 61(6): 557-568. https://doi.org/10.1002/jobm.202100061.

Belakhdar, G., Benjouad, A , Abdennebi, E.H. (2015). Determination of some bioactive chemical constituents from Thesium humile Vahl. Journal of Materials and Environmental Science. 6 (10): 2778-2783.

Hema, R., Kumaravel, S., Alagusundaram. (2011). GC/MS determination of bioactive components of Murraya koenigii. Journal of American Science, 7(1): 80-83.

Asghar S.F., Choudahry M.I. (2011). Gas chromatography and mass spectrometry (GC-MS) analysis of petroleum ether extrac t(oil). International Journal of Genetics and Molecular Biology, 3, 95-10.

Khare C. P. (2007). Indian medicinal Plants, edition; Springer, New York. NY

https://doi.org/10.1007/978-0-387-70638-2

Di Meo, S., Reed, T.T., Venditti, P., Victor. M.V. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Medicine and Cellular Longevity. 1245049.doi: 10.1155/2016/1245049.

Alam, A. (2021). Determination of chemical composition, in vitro and in silico evaluation of essential oil from Leaves of Apium graveolens grown in Saudi Arabia. Molecules, 26(23):7372. doi: 10.3390/molecules26237372.

Jirovetza, L, Buchbauera, G., Schweigera, T., Denkovab, Z , Slavchevb, A., Stoyanovac, A , Schmidtd, E and Geisslere, M. (2007). Chemical composition, olfactory evaluation and antimicrobial activities of Jasminum grandiflorum L. Absolute from India. Natural Product Communications, 2 (4) 407 – 412.

Hadi, M. Y. Mohammad, G. J., Hameed, I. H. (2016). Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 8(2):8-24. DOI: 10.5897/JPP2015.0364

O’Neil MJ. (2013). The Merck Index- An Encyclopedia of Chemicals, Drugs and Biologicals. (ed.). Cambridge, UK: Royal Society of Chemistry, 192-1024p.

Adeoye-Isijola, M.O., Olajuyigbe O.O, Jonathan, S.G, Coopoosamy, R.M. (2018). Bioactive compounds in ethanol extract of Lentinus squarrosulus mont- A Nigerian medicinal macrofungi. African Journal of Traditional, Complementary and Alternative Medicine, 15(2): 42-50.

Lotfy, M.M., Hassan, M. H., Hetta, H. M., El-Gendy, O. A., Mohammed, R. (2018). Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni-Suef University Journal of Basic and Applied Sciences, 7(3): 263-269.

Abubakar, M, Majinda R. (2016). GC-MS analysis and preliminary antimicrobial activity of Albizia adianthifolia (Schumach) and Pterocarpus angolensis (DC). Medicines, 3(1): 3.

Chouni, A., Pal, A., Gopal, P.K.., Paul S. (2021). GC-MS analysis and screening of antiproliferative potential of methanolic extract of Garcinia cowa on different cancer cell lines. Pharmacognosy Journal. 13(2): 347-361.

Lesielle (2021) “Glycerylpalmitate” accessed on (16/12/2021 via https://www.lesielle.com/int/en/glyceryl-palmitate-754.

Dennis, E. A., & Norris, P. C. (2015). Eicosanoid storm in infection and inflammation. Nature reviews. Immunology, 15(8): 511–523. https://doi.org/10.1038/nri3859.

Jiménez-Ferrer, E., Vargas-Villa, G., Belen, G., Martínez-Hernández, Manases González-Cortazar, Zamilpa, A, García-Aguilar, M. P, Arenas-Ocampo, M.L., Herrera-Ruiz, M. (2022). fatty-acid-rich Agave angustifolia fraction shows antiarthritic and immunomodulatory effect, Molecules, 27(21): 7204; https://doi.org/10.3390/molecules27217204

Kizilay , Z & Cetin, N.K.. (2018). Effect of methyl palmitate on the formation of epidural fibrosis in an experimental epidural fibrosis model. Journal of Investigative Surgery, 31(6): 469-474, https://doi.org/10.1080/08941939.2017.1356403

Saeed, N. M., El-Demerdash, E., Abdel-Rahman, H. M., Algandaby, M. M., Al-Abbasi, F. A and Abdel-Naim, A. B. (2012 ). “Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models,” Toxicology and Applied Pharmacology, 264(1): 84–93.

National Center for Biotechnology Information. (2019). “PubChem database: ethyl palmitate,” National Center for Biotechnology Information, Bethesda, MD, USA, September, https:// pubchem.ncbi.nlm.nih.gov/compound/Ethyl-palmitate.

Bu, C., Duan, D., Wang, Y., Ma, L., Liu, Y., and Shi, G. (2012). “Acaricidal activity of ethyl palmitate against tetranychus cinnabarinus,” in Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing, S. S. E. Zhu, Ed., Springer, Berlin, Germany.

Shah, A, Singh, T, Vijayvergia, R. (2015). GC-MS analysis of bioactive phytoconstituents from Rurmex vesicarius L. International Research Journal of Pharmacy, 6(4):269-272.

Park, S.Y, Seetharaman, R., Ko, M.J., Kim, D.Y., Kim, T.H., Yoon, M.K., Kwak, J.H, Lee S.J., Bae Y.S., Choi, Y.W. (2014). Ethyl linoleate from garlic attenuates lipopolysaccharide-induced pro-inflammatory cytokine production by inducing heme oxygenase-1 in RAW264.7 cells. International journal of Immunopharmacology. 19, 253-261.

Jelenko, C, Wheeler, M.L, Anderson A.P., Callaway, B.D, McKinley J.C. (1975). Studies in burns: XIV, heling in burn wounds treated with ethyl linoleate alone or in combination with selected topical antibacterial agents. Annal of Surgery.; 182:562-566.

Ataman Chemical . (2022). Ethyl linoleate; https://www.atamanchemicals.com/ethyl-linoleate_u25774/ (accessed October 18, 2022)

Charakida , A, Charakida, M, Chu A. C. (2007). Double-blind, randomized, placebo-controlled study of a lotion containing triethyl citrate and ethyl linoleate in the treatment of acne vulgaris. British Journal of Dermatology. 157:569-574.

Ko, G-A and Cho, S.K. (2018). Ethyl linoleate inhibits ?-MSH-induced melanogenesis through AKt/GSK 3?/?-catenin signal pathway. The Korean Journal of Physiology and Pharmacology, 22(1): 53-61. Doi: 10.4196/kjpp.2018.22.1.53.

Xie, C., Wang, S., Cao, M., Xiong, W., Wu, L (2022). (E)-9-Octadecenoic acid ethyl ester derived from lotus seedpod ameliorates inflammatory responses by regulating MAPKs and NF-?B signalling pathways in LPS-Induced RAW264.7 macrophages. Evidence Based Complementary and Alternative Medicine. 6731360. doi: 10.1155/2022/6731360.

Ye, S., Zhong, J., Huang, J., Chen, L., Yi, L., Li, X., Lv, J., Miao, J., Li, H., Chen, D., Li, C. (2021). Protective effect of plastrum testudinis extract on dopaminergic neurons in a Parkinson's disease model through DNMT1 nuclear translocation and SNCA's methylation. Biomedicine & Pharmacotherapy, 141, 111832. https://doi.org/10.1016/j.biopha.2021.111832

Meng, L.J. (2008). Regulation of stem cell differentiate into dopaminergic nerve by extracts from Plastrum testudinis promote. Guangzhou University of Chinese Medicine.

Nakashima, A., Kodani, Y., Kaneko, Y.S., Nagasaki, H., Ota, A. (2018). Proteasome-mediated degradation of tyrosine hydroxylase triggered by its phosphorylation: a new question as to the intracellular location at which the degradation occurs. Jounal of Neural Transmission, 125 pp. 9-15.

Nakashima, A., Ota, A., Kaneko, Y.S., Mori, K., Nagasaki, H. Nagatsu, T. (2013). A. possible pathophysiological role of tyrosine hydroxylase in Parkinson’s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer. Journal of Neural Transmission (Vienna), 120, 49-54.

Christensen, B.M., Li, J., Chen C. C., Nappi A. J. (2005). Melanization immune responses in mosquito vectors. Trends Parasitology. 21, 192–199. https://doi.org/10.1016/j.pt.2005.02.007

Vinjamuri, S and Achar, S. (2017). Comparison of phytochemical components in leaves and stems of Exacum bicolor roxb by GCMS. World Journal of Pharmacy and Pharmaceutical Sciences ,6(7): 2134-2138. DOI: 10.20959/wjpps20177-9655

Godara, P., Dulara, B.K., Barwer, N., Chaudhary, N.S. (2019). Comparative GC-MS analysis of bioactive phytochemicals from different plant parts and callus of Leptadenia reticulata Wight and Arnerican Pharmacognosy Journal, 11(1), 129–140.

Supardy, N.A., Ibrahim, D., Sulaiman, S.F., Zakaria, N.A. (2012). Inhi-bition of Klebsiella pneumoniae ATCC 13883 cells by hexane extract of Halimeda discoidea (Decaisne) and the identification of its potential bioactive compounds. Journal of Microbiology and Biotechnology; 22(6): 872–881.

Begum,,F. I., Mohankumar, R., Jeevan, M., Ramani, K. (2016). GC-MS analysis of bio-active molecules derived from Paracoc-cus pantotrophus FMR19 and the antimicrobial activity againstbacterial pathogens and MDROs. Indian Journal of Microbiology, 56(4): 426–432.

Kanimozhi, D and Bai, V. R. (2012). Evaluation of antimicrobial activity of Cynodon dactylon. International Journal of Research in Pharmacy and Science, 2: 34-43.

Yayli, N., Güleç, C., Üçüncü, O. (2006). Composition and antimicrobial activities of volatile components of Minuartia meyeri. Turkish Journal of Chemistry, 30: 71-76.

Pavia, D.L., Lampman, G.M and Kriz G.S. (2001). Introduction to spectroscopy, 3 rd edn. Thomson Learning, Inc.

Segneanu, E.A., Gozescu, I., Dabici, A., Sfirloaga, P., Szabadai, Z. (2012). Organic Compounds FT-IR

Spectroscopy, Macro To Nano Spectroscopy, Jamal Uddin (Ed.), 100p

Hanson, R.K.., Spearrin R. M and Goldenstein C.S. (2016). Spectroscopy and opitical diagnostics for gases. Springer Cham Heidelberg, New York, Dordrecht London, 1-200

Kalsi P S. (2004). Spectroscopy of organic compounds, New Age International Publishers, 3rd Edition, 2004; 65- 183.

Sharma, Y.R. (2015). Elementary organic spectroscopy: Principles and chemical application. S. Chand and Company PVT. Ltd., 162p.

Azogu, C. P. (2010). Laboratory organic chemistry. 2nd Edition. Maybinson Book Publishers, New Jersey, USA, 269p.