Carbapenem Resistance among Extended Spectrum Beta-Lactamases Producing Escherichia coli and Klebsiella pneumoniae isolates from Patents with Urinary Tract Infections in Port-Harcourt, Nigeria.

Main Article Content

Adebola Onanuga
Chibugo Henrietta Vincent
Darlington Deboh Eboh

Abstract

Extended Spectrum Beta-Lactamases (ESBLs) producing urinary bacteria with reduced susceptibility to carbapenems are a serious public health problem that is making the treatment of urinary tract infections (UTIs) a difficult task. Thus, this study investigated the prevalence of carbapenem resistance among ESBLs producing Escherichia coli and Klebsiella pneumoniae isolates from UTIs patients in Port Harcourt, Nigeria. Three hundred non-duplicated urine samples of UTIs patients deposited at the medical laboratory of University of Port Harcourt Teaching Hospital were collected, cultured and screened for the presence of Escherichia coli and Klebsiella pneumoniae isolates using standard microbiological techniques. The confirmed isolates were screened for phenotypic ESBLs expression and antibiotic susceptibility testing was carried out on the ESBLs positive isolates using Kirby-Bauer disc diffusion method. A total of 64 E. coli and 108 Klebsiella pneumoniae isolates were recovered and a total 81 (47.1%) of all the isolates expressed ESBLs production. The E. coli isolates were found to significantly expressed higher proportion of ESBLs enzymes than the Klebsiella pneumoniae (Odds ratio = 1.993, P = 0.030). E. coli and Klebsiella pneumoniae isolates exhibited very high resistance (73-100%) to most of the tested antibiotics and moderate resistance (35-48%) to ertapenem. The prevalence of multi-drug resistance (MDR) among the isolates was 100%. The high prevalence of carbapenem resistance in this study calls for very stringent measures on the prudent use of antibiotics and infection control program through the promotion of hand hygiene in order to reduce the spread of MDR pathogens in our society.

Downloads

Download data is not yet available.

Article Details

How to Cite
Onanuga, A. ., Vincent, C. H. ., & Eboh, D. D. . (2020). Carbapenem Resistance among Extended Spectrum Beta-Lactamases Producing Escherichia coli and Klebsiella pneumoniae isolates from Patents with Urinary Tract Infections in Port-Harcourt, Nigeria. Nigerian Journal of Pharmaceutical and Applied Science Research, 8(1), 16–23. Retrieved from http://mail.nijophasr.net/index.php/nijophasr/article/view/268
Section
Articles
Author Biographies

Adebola Onanuga

Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria

Chibugo Henrietta Vincent

Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.

Darlington Deboh Eboh

Department of Pharmaceutical Microbiology & Biotechnology, Faculty of Pharmacy, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.

References

Ahmed OI, El-Hady SA, Ahmed TM, Ahmed IZ (2013). Detection of bla SHV and bla CTX-M genes in ESBLs producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. The Egyptian Journal of Medical Human Genetics. 14: 277–283

Akanbi B, Ojonuba B, Njoku R (2013). "Detection of Extended Spectrum ?-Lactamase Producing Klebsiella pneumoniae and Escherichia coli in Two Hospitals in the Federal Capital Territory, Abuja, Nigeria," Open Journal of Medical Microbiology. 3(4): 207-212.

Anago E, Ayi-Fanou L, Akpovi CD, Hounkpe WB, Tchibozo MA, Bankole HS, et al. (2015). Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. Annals of Clinical Microbiology and Antimicrobials 14:5

Blair JMA, Mark A, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology 13 (1): 42–51

Briongos-Figuero LS, Gómez-Traveso T, Bachiller-Luque P, González MD, Gómez-Nieto A, Palacios-Martín T, et al. (2012). Epidemiology, Risk Factors and Co-morbidity for Urinary Tract Infections Caused by Extended-Spectrum Beta-Lactamase (ESBLs)-Producing Enterobacteria. Int J Clin Pract. 66(9): 891-896.

Buehrle DJ, Shields RK, Clarke LG, Potoski BA, Clancy CJ, Nguyen MH (2017). Carbapenem-resistant Pseudomonas aeruginosa bacteremia: risk factors for mortality and microbiologic treatment failure. Antimicrob Agents Chemother 61:e01243-16.

Canton R, Ruiz-Garbajosa P (2011). Co-resistance: an opportunity for the bacteria and resistance genes. Curr Opin Pharmacol 2011, 11: 477-485.

Chander A, Shrestha CD (2013). Prevalence of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Research Notes 6: 487

Chlebicki MP, Oh HML (2004). Extended spectrum beta lactamases in clinical isolates of Escherichia coli and Klebsiella spp. in a Singapore hospital: clinical spectrum. Ann Acad Med Singapore., 33: 302-6.

Chong Y, Yakushiji H, Ito Y, Kamimura T (2011). Clinical and molecular epidemiology of extended-spectrum b-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis. 30: 83–7.

Clinical and Laboratory Standards Institute (2014). Performance standards for antimicrobial susceptibility testing. 26th Edition, M100S. Wayne, Pennsylvania 19087 USA: Clinical and Laboratory Standards Institute.

Coque TM, Baquero F, Canton R (2008). Increasing prevalence of ESBLs-producing Enterobacteriaceae in Europe. Euro Surveill; 13(47): 19044.

Ejikeugwu PC, Ugwu CM, Araka CO, Gugu TH, Iroha IR, Adikwu MU, et al. (2012). Imipenem and meropenem resistance amongst ESBLs producing Escherichia coli and Klebsiella pneumoniae clinical isolates. International Research Journal of Microbiology 3(10): 339-344.

El Bouamri MC, Arsalane L, El Kamouni Y, Zouhair S (2015). Antimicrobial susceptibility of urinary Klebsiella pneumoniae and the emergence of carbapenem-resistant strains: A retrospective study from a university hospital in Morocco, North Africa. African Journal of Urology 21: 36–40.

Eshetie S, Unaka C, Gelaw A , Ayelign B , Endris M, Moges F (2015). Multidrug resistant and carbapenemase producing Enterobacteriaceae among patients with urinary tract infection at referral Hospital, Northwest Ethiopia. Antimicrobial Resistance and Infection Control. 4:12.

European Centre for Disease Prevention and Control (2018). Rapid risk assessment: Carbapenem-resistant Enterobacteriaceae - first update 4 June 2018. Stockholm: ECDC; 2018. https://ecdc.europa.eu/sites/portal/files/documents/RRA-Enterobacteriaceae-Carbapenems-European-Union-countries.pdf

Faari BU, Akanbi AA, Fadeyi A, Wahab KW, Nwabuisi C (2015). Prevalence of extended spectrum beta-lactamase-producing Klebsiella species at the University of Ilorin Teaching Hospital. J Med Investig Pract. 10: 20-3.

Garbati MA, Sakkijha, Abushaheen A (2016). Infections due to Carbapenem Resistant Enterobacteriaceae among Saudi Arabian Hospitalized Patients: A Matched Case-Control Study BioMed Research International Volume 2016, Article ID 3961684, 9 pages

Giwa FJ, Ige OT, Haruna DM, Yaqub Y, Lamido TZ, Usman SY (2018). Extended-Spectrum beta-lactamase production and antimicrobial susceptibility pattern of uropathogens in a Tertiary Hospital in Northwestern Nigeria. Ann Trop Pathol 9:11-6.

Habte TM, Dube S, Ismail N, Hoosen AA (2009). Hospital and community isolates of uropathogens at a tertiary hospital in South Africa. S Afr Med J. 99: 584–587.

Hawkey PM, Livermore DM (2012). Carbapenem antibiotics for serious infections. BMJ 344

Hawkey PM (2008). Prevalence and clonality of extendedspectrum beta-lactamases in Asia. Clin Microbiol Infect. 14(Suppl 1): 159-165.

Igbinoba AO, Osazuwa F (2012). Zero resistance to the carbapenems among extended spectrum betalactamase producing Klebsiella pneumoniae in a Nigerian university hospital. Int. J. Biol., Pharmacy and Allied Sciences. 1(1): 79-83.

Kola A, Maciejewski O, Sohr D, Ziesing S, Gastmeier P (2007). Clinical impact of infections caused by ESBLs-producing E. coli and K. pneumoniae. Scandinavian Journal Infectious Diseases 39: 975–82.

Kumar MS, Lakshmi V, Rajagopalan R (2006). Occurrence of extended spectrum b-lactamases among Enterobacteriaceae spp. isolated at a tertiary care institute. Indian J Med Microbiol; 24: 208–11.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 18 (3): 268-81

McEwen SA (2006). Antibiotic use in animal agriculture: What have we learned and where are we going? Anim Biotechnol 17: 239-50.

McLaughlin M, Advincula MR, Malczynski M, Qi C, Bolon M, Scheetz MH (2013). Correlations of antibiotic use and carbapenem resistance in enterobacteriaceae. Antimicrob Agents Chemother 57: 5131-5133.

Melzer M, Petersen I (2007). Mortality following bacteraemic infection caused by extended-spectrum beta-lactamase (ESBLs) producing E. coli compared to non-ESBLs producing E. coli. Journal of Infections 55: 254–259.

Muhammad MH, Swedan S (2015). Molecular and Phenotypic Characterization of Carbapenem Resistance and Extended Spectrum Beta-Lactamases among Urinary Escherichia coli Isolates. International Journal of Science and Technology 5 (9).

Nataro JP, Kaper JB (1998). Diarrheagenic Escherichia coli Clinical Microbiology Reviews 11: 142-201.

Nordmann P (2014). Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med Mal Infect 44: 51-56.

Ogbolu DO, Daini OA, Ogunledun A, Alli AO, Webber MA (2011). High levels of multidrug resistance in clinical isolates of Gram negative pathogens from Nigeria. International Journal of Antimicrobial Agents 37: 62-66.

Ogefere HO, Aigbiremwen PA, Omoregie R (2015). Extended Spectrum Beta-Lactamase (ESBLs)–producing Gram-negative isolates from urine and wound specimens in a tertiary health facility in southern Nigeria. Tropical Journal of Pharmaceutical Research 14(6): 1089-1094.

Okesola AO, Fowotade A (2012). Extended-spectrum beta-lactamase production among clinical isolates of Escherichia coli. Int. Res. J. Microbiol. 3(4): 140-143.

Overturf GD (2010). Carbapenemases: a brief review for pediatric infectious disease specialists. Pediatr Infect Dis J., 29: 68-70.

Pang F, Jia X, Zhao Q, Zhang Y (2018). Factors associated to prevalence and treatment of carbapenem-resistant Enterobacteriaceae infections: a seven years retrospective study in three tertiary care hospitals. Ann Clin Microbiol Antimicrob. 17:13

Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA (2011). Carbapenems: past, present, and future. Antimicrob Agents Chemother. 55(11): 4943–60.

Paterson DL, Bonomo RA (2005). Extended-spectrum ß-lactamases: a clinical update. Clinical Microbiology Reviews 18: 657–686.

Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu L, Klugman KP, et al. (2001). Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extendedspectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39: 2206–12.

Patrick DM, Hutchinson J (2009). Antibiotic use and population ecology: How you can reduce your “resistance footprint” CMAJ 180(4): 416-421

Perez F, Endimiani A, Hujer KM, Bonomo RA (2007). The continuing challenge of ESBLs. Curr Opin Pharmacol. 7(5): 459-469.

Rodrigues C, Joshi P, Jani SH, Alphonse M, Radhakrishnan R, Mehta A (2004). Detection of b-lactamases in nosocomial gram negative clinical isolates. Indian J Med Microbiol. 22: 247–50.

Romero EDV, Padilla TP, Hernandez AH, Grande RP, Vazquez MF, Garc?a IG, et al. (2007). Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum b-lactamases. Diagn Microbiol Infect Dis. 59:433–7.

Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E (2010). The Diagnosis of Urinary Tract Infection: A Systematic Review. Deutsches Arzteblatt Int. 107(21): 361-7.

Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Michael W, et al. (2008). The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46: 155-64.

Turner PJ (2005). Extended-spectrum ß-lactamases. Clin Infect Dis 41 (suppl 4): S273–5.

Wemambu II, Ifajeunnu FC (2016). Prevalence of Multidrug Resistant Uropathogenic Escherichia coli Extended Spectrum Beta

Lactamase Producers from Urine samples in a State Hospital, Ota, Nigeria International Journal of Science and Nature 7(3): 651-658

Yadav K, Prakash S (2017). Screening of ESBLs Producing Multidrug Resistant E. coli from Urinary Tract Infection Suspected Cases in Southern Terai of Nepal. J Infect Dis Diagn 2: 116.

Yusha UM, Olonitola SO, Aliyu BS (2007). Prevalence of extended-spectrum ?-Lactamases (ESBLs) among members of the Enterobacteriaceae isolates obtained from Muhammad Abdullahi Wase Specialist Hospital, Kano, Nigeria. Int J Pure Appl Sci 3:42-8.

Yusuf I, Haruna M, Yahaya H (2013). Prevalence and antibiotic susceptibility of AmpC and ESBLs producing clinical isolates at a tertiary health care center in Kano, North-West Nigeria. African Journal of Clinical and Experimental Microbiology 14(2): 109-119.

Zorgani A, Almagatef A, Sufya N, Bashein A, Tubbal A (2017). Detection of CTX-M-15 Among Uropathogenic Escherichia coli Isolated from Five Major Hospitals in Tripoli, Libya Oman Medical Journal 32(4): 322-327.